Artificial Intelligence Models for hSITE Theme 1

University of Waterloo David R. Cheriton School of Computer Science Supervisor: Prof. Robin Cohen

Students: Hyunggu Jung (Masters), John Champaign (PhD), Joshua Gorner (Masters)

Current Projects related to hSITE

- Hyunggu Jung
 - Masters student
 - modeling bother cost
 - reasoning about interaction
 - AI areas of user modeling, decision theoretic reasoning, intelligent interaction

Current Projects (continued)

- John Champaign
 - PhD student
 - intelligent tutoring systems
 - content derived from corpus of texts
 - peer-based assistance (social networks)

Current Projects (continued)

- Joshua Gorner
 - Masters student
 - modeling trust in multiagent systems
 - social networks of advisors: ideal size

Summary

- Jung: right person, right time; emergency room settings (critical care)
- Champaign: right information, right people; homecare settings
- Gorner: right people; homecare, decision making

Hybrid Transfer-of-Control (HTOC) Model

No break by the end of the arrow

Visual Representation of strategy with the FTOCs and PTOCs; each world occupies one square

- Focus on one question:
 - "Can you take over decision making?"
- Reasoning about
 - Partial transfers of control (PTOCs)
 - Questions
 - Full transfers of control (FTOCs)
 - Decision making

Decision Making

 $EU(s) = \sum_{LNI} [P(LN_I) \times (EQ(LN_I) - W(T_{LNI}) - BC_{LNI})]$

- Focus on current patient which expert to ask
- Generate possible strategies
 - Find optimal strategy: best quality, least bother
 - Strategy regeneration: update parameter values

User Modeling

User_Unwillingness_Factor

= Attention_State_Factor + Lack_of_Expertise_Factor

Init = User_Unwillingness_Factor
x Attention_State_Factor x TOC_Base_Bother_Cost

BST (BotherSoFar)

= $\Sigma_{toc\in PastTOC}$ TOC_Base_Bother_Cost(toc) x $\beta^{t(toc)}$

BotherCost(BC)

= Init + BC_Inc_Fn(BSF, User_Unwillingness_Factor)

Task Criticality (TC)

Task Criticality	High			Med			Low		
Lack_of_Expertise_Factor	Low	Med	High	Low	Med	High	Low	Med	High
Weight	10%	0%	-10%	5%	5%	-5%	0%	0%	0%

- Task criticality of the patient
- Enable the expected quality of a decision to be weighted more heavily in the overall calculation of expected utility when the case at hand is very critical

$$EU_{ei}^{d} \rightarrow EQ_{ei}^{d} + (Weight \times EQ_{ei}^{d})$$

Peer-Based Intelligent Tutoring Systems: A Corpus-Oriented Approach

- Designing effective intelligent tutoring systems
 - •Offload the time for development
 - •Peer-based approach
 - •Repository of learning objects
 - •Subproblems: curriculum sequencing, annotations, corpus development
 - Validation through simulated students

Curriculum Sequencing

- Given a set of learning objects and a group of students, over multiple iterations, which object should be assigned to each student?
- Collaborative filtering inspired approach, where learning objects that were useful to a similar student in the past are assigned to each student

50 Students and 100 LearningObjects

Curriculum Sequencing

$$p[a,l] = \kappa \sum_{j=1}^{n} w(a,j)v(j,l)$$

- p[a,1]: anticipated benefit to active user, *a*, from interacting with a given learning object *l*
- \sum : consider interactions of all previous students with the learning object l
- w(a,j) : how similar the student j was to the active user (A-, B+) vs (B+, D-)
- v(a,j) : value of the interaction to student j
- *K* : a normalizing factor

Optimizing Advisor Network Size in a Personalized Trust-Modelling Framework

- We explore how to determine the optimal size of networks in trust modelling
- [Zhang 2009] proposed a personalized trust-modelling framework for e-commerce how many advisors should a user have in this framework?
- We identify two methods (*max nbors* and thresholding) that can be used to reduce network size; either may optionally be combined with advisor referrals for improved accuracy

Advisor Referrals

- If our advisor network has size *n*, we will attempt to find *n* advisors (not necessarily the same advisors!) that are qualified to report on a particular seller *s*
 - An advisor a_j is deemed to be *qualified* if the number of ratings $N_{ij}^{a_j}$ for s is at least some minimum number N_{min}
- Regardless, weighting of advisors will always be based on the agent b's own measure of trustworthiness in each selected advisor
- Should allow us to make use of the experience throughout the system while maintaining a relatively small social network for each agent

Next Steps

- Feedback from Research Community
 - •Jung: UMUAI special issue on User Modeling and Healthcare
 - •Champaign: ITS, EDM conferences
 - •Gorner: AAMAS trust modeling workshop, Canadian AI conference
- Connections to Team 1 researchers
- Connections to Theme 2 and Theme 3
 - •Jung: sensing to model patient and medical experts
 - •Jung: networking delimiting set of experts
 - •Champaign, Gorner: networking delimiting network of peers