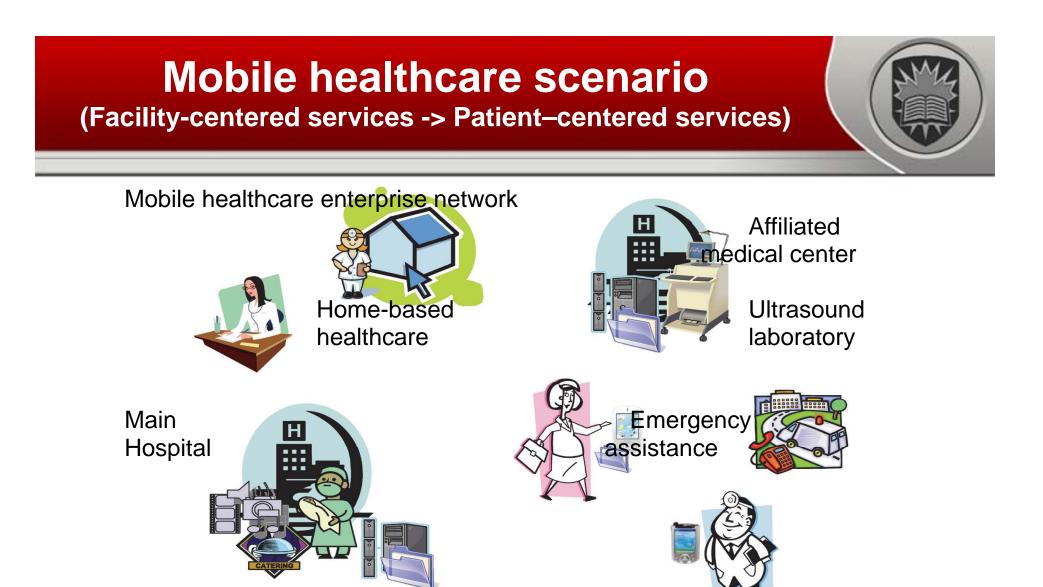


Service Discovery for Context-Aware Mobile Ad-hoc Networks for Health-care Applications

Shengrong Bu and Peter Liu shengrbu@sce.carleton.ca Department of Systems and Computer Engineering


- Motivation
- Related work
- Proposed distributed service discovery model
- Analysis and results
- Conclusion and future work

Applications of MANETs

- Healthcare monitoring
- Other healthcare as well
 - Security
 - Environmental monitoring
 - Ambient intelligence
 - Critical healthcare infrastructures monitoring

[Note] Taken from "Enabling secure service discovery in mobile healthcare enterprise networks" by A. Toninelli.

Service Discovery in MANETs

- Service discovery in fixed networks
 - Assumes reliable communication
 - Mainly centralized approaches
- Service discovery in MANETs
 - Distributed / decentralized
 - Scalable
 - Energy efficient (Low message overhead)
 - Fast response time (especially for the real-time applications)

Related Work

- Directory-less service discovery architecture
 - For dynamic small-scale ad hoc networks
 - For networks difficult to host service directories
 - Important research: DEAPspace, Konark, Allia, Groupbased Service Discovery (GSD)
- Directory-based service discovery architecture
 - For large ad hoc networks
 - Choose directory nodes & communication frequency between service discovery nodes
 - Important research: Kozat and Tassiulas's Service
 Discovery Protocol, Service Rings, SANDMAN, DSDM

Proposed Distributed Service Discovery Model

- Distributed service directory selection/ notification phase
 - Resource capabilities : memory capacity, power energy, processing speed and bandwidth
 - The number of neighbor nodes
 - Relative stability of the nodes in the network
 - The value of each above node capability changes over time
- Service registration phase
 - Register service information with the nearest service directory
 - Notify other neighboring SD nodes
- Service discovery phase

Analysis

- How the number of service directory nodes affects path availability between a random node and its nearest service directory node
 - The stability of the whole network
 - Reduction of the response time
 - Scalability
- Assumption:
 - Rectangular area of size $(A = a^*b)$
 - A mobile multi-hop network with N uniformly distributed nodes, each of them with radio transmission range r0
 - Each node moves at a randomly chosen direction and a random velocity

 Probability density function (pdf) of the distance S between two random nodes

$$f_{s}(s) = \frac{4s}{a^{2}b^{2}} \left(\frac{\pi}{2}ab - as - bs + \frac{1}{2}s^{2}\right)$$

for $0 \le s \le b \le a$.

The probability that the number of hops between one node and its nearest service discovery node within h-hop is:

$$\frac{\lim_{M} P(H \le h) = F_{\min(X)}(hr_0)}{1 + 1 + 1 + 1}$$
$$= 1 - (1 - F_S(hr_0))^{N_{SD}}$$

Results-1

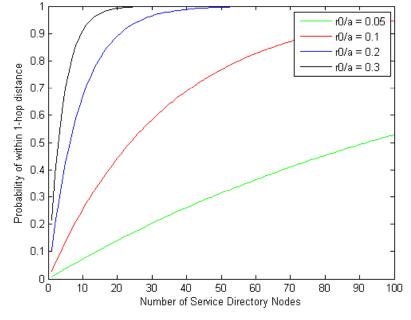


Figure 1: Probability of within 1-hop distance between a random Node and its nearest SD node

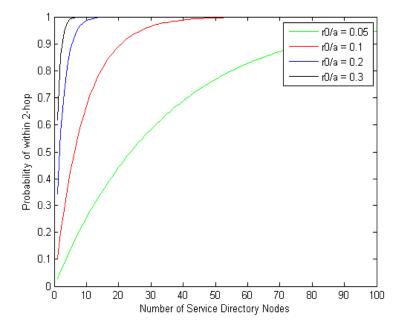


Figure 2: Probability of within 2-hop distance between a random node and its nearest SD node

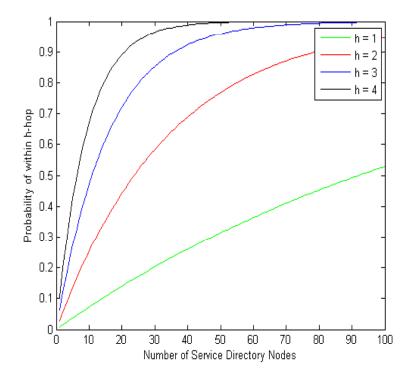


Figure 3: Probability of within h-hop distance between a random node and its nearest SD node when $r_0/a=0.05$

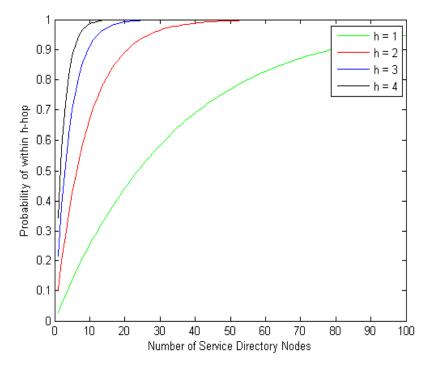


Figure 4: Probability of within h-hop distance between a random node and its nearest SD node when $r_0/a=0.1$

Results-3

The probability that the link availability time is less than t is

$$F(r,t) = \int \int f_{vr}(v_r, q_r) dv_r dq_r$$

• The probability of an *h*-hop path availability time greater than t is as follows $P_h(t) = (1 - F(t))^h$

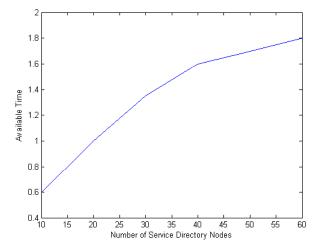


Figure 5: the relationship between the number of service discovery nodes in the network and the average path available time when $r_0/a=0.1$

- Overview Directory-less / Directory-based service discovery architectures
- Provide a totally distributed directory-based service discovery model
- Mathematical analysis and results

Choosing Service Directory Nodes in Proposed Service Discovery Model for Mobile ad-hoc Networks

Shengrong Bu and Peter Liu shengrbu@sce.carleton.ca Department of Systems and Computer Engineering