

hSITE ARR June 4, 2010

hSITE Annual Research Review Friday, June 4, 2010, Montreal, QC

Dorina C. Petriu

Carleton University Department of Systems and Computer Engineering Ottawa, Canada, K1S 5B6 http://www.sce.carleton.ca/faculty/petriu.html

Tasks and Milestones

- Met the objectives for the following milestones:
 - [Task 1.2.2, M1.7] Formal specification of three-layered system architecture
 - [Task 2.1.1, M2.2 a] Definition of a UML profile for dependability/availability annotations that extends the generic Quantitative Analysis model from MARTE.
- Currently working on the following milestones:
 - [Task 2.1.1, M2.1] Development of methodology to assess SOA quality according to functionality partitioning quality
 - [Task 2.1.1, M2.2 b] Development of model transformation techniques to build performance models from UML models of SOA systems with performance annotations

Research Team

Name of student/PDF and e-mail	Program	Task Number	hSITE Start date	Expected Graduation Date	Funding
Mohammad Alhaj malhaj@sce.carleton.ca	Ph.D.	1.2.2, M1.7 2.1.1, M.2.2.b	May 2009	August 2012	2009: other 2010: hSITE
Mira Vrbaski mvrbaski@sce.carleton.ca	M.App.Sc.	2.1.1, M.2.1	Sept. 2009	August 2011	No funding (part-time)
Nariman Mani nmani@sce.carleton.ca	Ph.D.	2.1.1, M.2.1	Jan. 2010	May 2013	2010: other
M. Kaleem Khan mkhan@connect.carleton.ca	M.App.Sc.	2.1.1, M.2.2.c	Sept. 2010	May 2012	2010: hSITE

Approach to Software Performance/Dependability Analysis

- Software performance/dependability evaluation in the context of Model-Driven Engineering:
 - starting point: UML software model used also for code generation
 - add performance annotations (using specialized profiles such as MARTE)
 - generate a performance/dependability analysis model
 - queueing networks, Petri nets, stochastic process algebra, Markov chain, fault tree, etc.
 - solve analysis model to obtain quantitative results
 - analyze results and give feedback to designers

Definition of a UML profile for Dependability

- **Dependability:** the ability to avoid failures more frequent or more severe than acceptable. Dependability attributes:
 - a) availability: the readiness for correct service;
 - **b)** reliability: the continuity of correct service;
 - c) safety: the absence of catastrophic consequences on the users and environment;
 - **d)** maintainability: the ability to undergo modifications and repairs.
- Dependability analysis techniques:
 - Failure Mode and Effect Analysis (qualitative evaluation)
 - **stochastic Petri nets (quantitative evaluation)**
 - **fault trees (qualitative and quantitative)**
- Research Goals
 - add dependability annotations to UML software models -> define dependability profile as an extension of the MARTE standard
 - automate the generation of dependability models from UML software models annotated with dependability information

Dependability Analysis Model

• Domain model: represents the main concepts as classes grouped into packages

Core Model

Threat Model

Message Redundancy Service: annotated UML model

Annotated state machines

Generated Stochastic Petri Nets Model

Context-aware SOA

- SOA (Service-Oriented Architecture):
 - a software development paradigm aiming to develop and deploy software applications as a set of reusable composable services.
- Context-aware SOA:
 - context-aware services make use of different level of contexts and adapt the way they behave according to the current context
 - context-aware services are composed at runtime with the purpose of executing context-aware applications described by business workflows
 - integrating context-awareness in SOA by means of special services for:
 - acquiring and monitoring the context of different entities
 - abstracting and understanding the context
 - providing context information to other services when needed
 - triggering actions based on the context
- Convergence of four trends:
 - Service orientation
 - Context awareness

- Software product lines (managing variability)
- Model-driven development

Choosing a modeling language for SOA

- **Requirements for the SOA modeling language:**
 - able to model different aspects of SOA systems such as:
 - workflows representing the top-level of a SOA system
 - underlying system architecture: components, services and their relationships
 - service contracts
 - detailed models of internal structure and behaviour of components and services
 - models should be complete to serve as basis for code generation
 - language should be extensible to allow adding extra information for the analysis of non-functional properties, such as performance and dependability
 - Ianguage should be preferably standard, widely used and supported by existing tools.
- Chosen language UML extended with profiles:
 - **BPMN** profile (for business process models)
 - **SoaML** (models service relationships and contracts)
 - MARTE (modeling and analysis of real-time and embedded systems)

Performance Analysis of SOA

- PUMA4SOA Poster presented by Mohammad Alhaj
- Model transformation from a UML+MARTE model to a performance model (LQN)
- The source model contains:
 - workflow model
 - service architecture model (dependencies, components)
 - service behaviour model
 - deployment
 - middleware overheads
- Model transformation steps:
 - Aspect-oriented approach for adding middleware overheads
 - Transformation 1: from source model to Core Scenario Model (CSM)
 - Transformation 2: from CSM to performance model (LQN)

Publications

• hSITE publications

- [1] S. Bernardi, J. Merseguer, D.C. Petriu, "A Dependability Profile within MARTE", *Software and System Modeling* (SoSyM) journal, DOI:10.1007/s10270-009-0128-1, accepted 2009.
- [2] D.C. Petriu, "Software model-based performance analysis", book chapter in *Model-Driven Development for Distributed and Real-Time Embedded Systems*, (eds. J.P. Babau, J. Champeau, S. Gerard), Hermes, in press, accepted 2009.
- [3] M.Alhaj, D.C.Petriu, "Approach for generating performance models from UML models of SOA systems", submitted to Cascon 2010.
- Other publications
- [3] C.M. Woodside, D.C. Petriu, D.B. Petriu, J. Xu, T. Israr, G. Georg, R. France, J.M. Bieman, S.H. Houmb, J.Jürjens, "Performance Analysis of Security Aspects by Weaving Scenarios Extracted from UML Models", *Journal of Systems and Software* Special Issue WOSP'2007, Vol.82, pp.56–74, 2009.
- [4] S.H. Houmb, G. Georg, D.C. Petriu, B. Bordbar, I. Ray, K. Anastasakis, and R.B. France, "Balancing Security and Performance Properties During System Architectural Design", book chapter in *Software Engineering for Secure Systems: Industrial and Research Perspectives*, H.Mouratidis (Ed). IGI Global, in press, accepted 2009.

Honours and other news

- Honours:
 - elected as a Fellow of the Canadian Academy of Engineering 2010
- **Program Committee Chair:**
 - The 13th ACM International Conference on Model Driven Engineering Languages and Systems (MoDELS 2010)
 - the premier international conference on model-driven software development
 - ♦ high-quality conference, typical acceptance rate under 20%.
- Keynote Speaker:
 - QUASOSS' 2010: Quality of Service-Oriented Software Systems
- Program Committees:
 - 10 conferences in 2010
- Contributor to international standards:
 - UML Profile for Modeling and Analysis of Real-Time and Embedded Systems (MARTE) – part related to performance
 - RFP issued by OMG in 2005
 - Version 1.0 adopted as a OMG standard in December 2009.