

David V. Plant McGill University

Team: Dr. Josh Schwartz, Mr. Nich Zicha, Mr. Yang Zhu, Mr. Qunbi Zhuge, Mr. Sumit Saha, and Mr. Amit Khan

Ultra-Wide Band (UWB) Localization

- Precise Location Identification
 - Ultra-wide band technologies for asset tracking
 - New pulse generators for custom pulse-shapes

UWB Pulse Generator

UWB transmission

- Low-energy and lowpower spectral density
- Short-range, highbandwidth, non-interfering

UWB pulses

- Modulation format dependent (impulse-radio, multi-band OFDM)
- Need for high flexibility, dynamic pulse shaping

UWB Pulse Generator

Pulse combination method

- Input square-pulse transformed to UWB pulse
- Independent programmable digital control of sub-pulse gain & delay
- Six-pulse prototype can adjust for any waveform

UWB Pulse Generator

Demonstration IC in 90nm CMOS (in testing)

- 1.2 V supply, 50mW @ max data rate
- 1 mm x 1.1 mm
- Max of 2 Gbps
 modulation
- BPSK, 2-PPM, PSM (pulse-shape modulation) all enabled formats

- High signal bandwidths require new toolbox
 - Real-time operations (spectral analysis, delay, synchronization, temporal imaging for ADC/DAC)
 - Can use dispersion to perform signal analysis
 - Mapping of frequency content in the time domain

Can we implement microwave broadband dispersion to do this?

- A substrate integrated waveguide (SIW) is made with a "via" fencepost sidewall (holes filled with metal)
- Easy fabrication (planar) compared to regular waveguides
- Can create a periodic resonant bandgap by "wiggling" the walls
- These are called "electromagnetic bandgaps" (EBGs)

- Group delay and bandwidth can be set by controlling the chirp parameter of an EBG
- Pictured: different chirp settings affect the bandwidth (top right) and delay slope (bottom right)

60 GHz area

- Currently testing these concepts at 60 GHz where UWB is being investigated for short-range wireless links
- Pictured: chirped EBG in SIW with 5 GHz bandwidth, +0.11ns/GHz dispersion slope.

- Increased UWB dispersion from only one EBG
 - UWB signal processing should be able to operate on long time-windows (or continuously)
 - Existing EBGs can only provide finite dispersion (limited by the length of the device to <50cm)
 - A recirculating configuration allows several passes through the dispersion

Conclusions

- Ultra-Wide Band Concepts
 - Are promising for use in tracking assets (human an physical)
 - Can be integrated into existing communications systems.
 - Scalable to higher data rates, thus improving performance.