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Indoor Location Estimation for Clinical Applications 

Background 

A fundamental requirement for context aware computing is determination of 
the location. This information is gathered from the location sensors or sur-
veillance cameras. Unfortunately, the sensor measurements have error and 
need post-processing. Bayesian tracking can be used to estimate the current 
location from noisy sensor measurements. 

Bayesian tracking 

In tracking problems, the objective is to estimate the current state, having 
the current observation. Since the observations are almost always noisy, 
Bayes filters use probabilistic methods to estimate the current state from the 
state and measurement equations recursively. In the state equation, 

𝐱𝑡 = 𝐟𝑡 𝐱𝑡−1, 𝐮𝑡 , (1) 

the system transition function 𝐟𝑡  relates the current state 𝐱𝑡  to the previous 

state 𝐱𝑡−1 and the current process noise 𝐮𝑡 . The current measurement 𝐳𝑡  is 

related to the current state 𝐱𝑡  and the current noise vector 𝐯𝑡  by the meas-
urement function 𝐠𝑡  as: 

𝐳𝑡 = 𝐠𝑡 𝐱𝑡 , 𝐯𝑡 . (2) 

The system transition function 𝐟𝑡  and the measurement function 𝐠𝑡  can be 
nonlinear. Additionally, the noise vectors can be taken from any known 
probability distributions [1]. Using Bayesian tracking, the posterior density 

𝑝 𝐳𝑡 |𝐱𝑡  is evaluated. In location estimation problems, the state vector 𝐱𝑡  
contains the location information, which can be simply the coordinates or 
could also include the velocities, etc. The motion model and the sensor 
model provide details on Eq. (1) and Eq. (2), respectively [2,3]. 

Motion model 

The motion model used for our experiment is defined as: 

𝑝 𝐗𝑡 = 𝐱𝑡 |𝐗𝑡−1
𝑖 = 𝐱𝑡−1

𝑖  ~N 𝜇𝑡|𝑡−1, 𝜎𝑡|𝑡−1
2  . 

which is evaluated assuming that at each iteration white noise 𝑛𝑡~N 𝜇𝑛 , 𝜎𝑛
2  

is added to the velocity: 

𝐯𝑡 = 𝐯𝑡−1 + 𝐧𝑡 .  
 

The following figures show a sample trajectory generated by this model. 

 
a ) x direction vs. time 

 
b ) y direction vs. time  

c ) x vs. y direction 
Figure 1 : a sample trajectory 

Sensor model 

Assuming: 

𝐳𝑡 = 𝐱𝑡 + 𝐞𝑡 .  

where 𝐞 =< ex , ey >, as the measurement equation, we have 𝐞𝑡 = 𝐳𝑡 − 𝐱𝑡  

and 𝑝 𝐳𝑡 |𝐱𝑡  can be computed as 𝑝 𝐳𝑡 |𝐱𝑡 = 𝑝 𝐞𝑡 = 𝐳𝑡 − 𝐱𝑡 , by using the 
sensor measurements for stationary tags. Using Gaussian Mixture Model 
with 𝑐 clusters in each direction, the sensor error distribution can be written 
as: 

𝑝 𝑒 =  𝑓 𝑥; 𝜇𝑗 , 𝜎𝑗
2 

𝑐

𝑗=1

, 
 

in each direction, where 𝑒 could represent either 𝑒𝑥  or 𝑒𝑦 . 

Particle filters 

Particle filters use samples to approximate the posterior distribution recur-
sively. The samples are taken from a proposal distribution 𝜋 𝑥  and are as-

sociated with weights to approximate the density 𝑝 𝑥 . Using this approxima-

tion 𝑝 𝑥  can be approximated as: 

𝑝 𝑥 ≈  𝑤𝑖

𝑁𝑠

𝑖=1

𝛿 𝑥 − 𝑥𝑖 , 

where 𝑁𝑠 is the number of samples and 

𝑤𝑖 ∝
𝑝 𝑥 

𝜋 𝑥 
. 

The proposal distribution 𝜋 𝑥  is called the importance function.  As the im-
portance density approximates the posterior, a better choice for it could im-
prove the performance [4]. There are many choices for the importance func-

tion among which the prior importance function, 𝜋 𝐱𝑡 |𝐱0:𝑡−1, 𝐳0:𝑡 =
𝑝 𝐱𝑡 |𝐱𝑡−1 , and the optimal importance function, 𝑝 𝐱𝑡 |𝐱𝑡−1, 𝐳𝑡  are the most 
common. 

Simulation results 

Using the provided motion model and sensor model, the optimal importance 
function can be evaluated. In the figure below, the real location, sensor 
measurements, and estimated location (using particle filtering with optimal 
importance function), are represented by yellow dashed line, blue dots, and 
red line, recursively. 

 
a )  x vs. time 

 
b )  y vs. time 

Figure 2 : Location estimation with MSSI sensors for synthetic data 

The table below shows a comparison between the two importance functions. 
The performance metrics used are the root of Mean Squared Error, and 
maximum error in each direction. 

x y Importance 
Function RMSE Max error RMSE Max error 

2.6328 18.4104 2.3916 19.792 Prior 
0.5414 1.4110 0.3130 1.1655 Optimal 
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