

hSITE ARR2 June 17, 2011

# Integrating Context-Awareness in Service-Oriented Healthcare Applications

#### **Dorina C. Petriu**

Carleton University Department of Systems and Computer Engineering Ottawa, Canada, K1S 5B6 http://www.sce.carleton.ca/faculty/petriu.html



hSITE ARR2 June 17, 2011

#### **Research Team**

| Name of student / PDF<br>and email address         | Program<br>MSc/PhD/<br>PDF/<br>u-grad | Task #<br>(Specify<br>if PRP) | hSITE<br>Start<br>date | Graduation<br>date (actual<br>or<br>anticipated) | Funded by:<br>hSITE<br>and/or other |
|----------------------------------------------------|---------------------------------------|-------------------------------|------------------------|--------------------------------------------------|-------------------------------------|
| <b>Alhaj, Mohammad</b><br>malhaj@sce.carleton.ca   | Ph.D.                                 | 1.2.2 and 2.1.1               | May<br>2009            | August 2012                                      | hSITE                               |
| <b>Mani, Nariman</b><br>nmani@sce.carleton.ca      | Ph.D.                                 | 2.1.1                         | Jan 2010               | August 2013                                      | other                               |
| Khan, Muhammad<br>Kaleem<br>mkalim@sce.carleton.ca | M.App.Sc.                             | 1.2.2                         | Sept 2010              | Dec. 2011                                        | hSITE +<br>other                    |
| Vrbaski, Mira<br>mvrbaski@connect.carle<br>ton.ca  | M.App.Sc.                             | 2.1.1                         | Sept 2009              | Dec. 2011                                        | part-time<br>student                |
| Gunter Mussbacher<br>gunter@sce.carleton.ca        | postdoc                               | 2.1.1                         | Jan 2011               | Dec 2011                                         | other +<br>hSITE                    |



## **Tasks and Objectives**

- Theme 2, Project 2.1, Task 2.1.1:
  - *i.* Integrating context awareness in Service-Oriented Architecture (SOA). The objective is to implement context-awareness at the application level (not only at the network level). The applications are executed by composing reusable services at runtime.
  - *ii. Investigating Performance Effects of SOA design patterns*. Addressing the problem of service architecture quality by applying SOA design patterns from literature. Each design pattern aims to improve a given software characteristics (be it functional or non-functional) and has performance side-effects, which are evaluated with the help of performance models.
  - *iii. Deriving automatically performance models from SOA software models.* continuing the work presented last year by Ph.D student M. Alhaj. The model transformation algorithms has been designed and now are being implemented.
- Theme 1, Project 1.2, Task 1.2.2:
  - *iv.* Applying Model-driven SOA. The objective is to apply model-driven techniques and tools for developing service-based systems that implement health-care workflows identified in Theme 1. For now we have been experimenting with tools for model-driven SOA.



## i. Integrating context-awareness in service-oriented healthcare applications



#### **Requirements for IT in healthcare**

#### • According to the paper:

Erin Yu, Ryan Kealey, Mark Chignell, Joanna Ng, and Jimmy Lo, "Smarter Healthcare: An Emergency Physician View of the Problem", in M. Chignell et al. (Eds.): The Smart Internet, LNCS 6400, pp. 9–26, 2010.

the following are some IT shortcomings in emergency medicine:

- **a.** A lack of integration from the user's perspective
- **b.** A lack of individualization & context-awareness
- **c.** Lack of server-initiated connections
- d. Lack of service-level collaboration
- e. Limited user control
- Our proposed solution to solve some of these shortcomings:
  - Adopt Service-Oriented Architecture (SOA) → addressing (a), (d)
  - Integrate context-awareness in SOA → addressing (b), (c), (e),



#### page 6

#### **Context-aware SOA**

- SOA (Service-Oriented Architecture) paradigm:
  - promotes the idea of composing applications from loosely coupled reusable services to create flexible, dynamic business processes and agile applications that span organizations and computing platforms.
- Context-aware SOA:
  - integrating context-awareness in SOA by means of special services for:
    - acquiring and monitoring the context of different entities
    - abstracting and understanding the context
    - providing context information to other services when needed
    - triggering actions based on the context
  - context-aware services make use of different level of contexts and adapt the way they behave according to the current context based on context rules
  - context-aware services are composed at runtime with the purpose of executing context-aware applications described by business workflows



#### **Context management services**

- The proposed context management framework includes the following services:
  - context provider service: collects raw context information from various sources and translates it to low level context information
  - context aggregation service: receives requests for context information and finds which context provider service can offer it
  - context notification service: uses a publish-subscribe mechanism to provide notification to clients when the context changes
  - context reasoning service: provides results based on context rules which allow to tailor the action to be taken to the actual context value
  - context discovery service: mapping between context provider service and context information.
- The proposed context management system is implemented using a number of open-source components and tools, as presented in Mira Vrbaski's poster.



## ii. Investigating performance effects of SOA design patterns



## **Objective**

- Service Oriented Architecture (SOA) design patterns provide generic solutions for many architectural, design and implementation problems
  - any pattern may have an impact on performance, either positive or negative.
- Objective: study the performance impact of a SOA design pattern applied to a system in early development phases
- The planned approach exploits the context of model driven engineering (MDE): SModel → PModel
  - PUMA model transformation chain is used to generate the initial PModel of the system
  - A SOA design pattern is applied to SModel and the change is propagated incrementally to PModel.



#### **Overview of the Proposed Approach**





#### **Research status**

- Concerned with the quality of a service-oriented system, which can be improved by applying SOA design patterns.
- Propose an approach to propagate changes due to the application of SOA design patterns from the SModel to the corresponding PModel
  - incremental model transformation to speed up the change propagation
- Current status
  - preliminary experiments demonstrated feasibility
  - these are by no means definitive and a general approach is still to be developed.
- Future work
  - fully develop a general approach for incremental change propagation
  - apply it to many SOA patterns from literature
  - automate incremental change propagation from SModel to PModel for different patterns by using traceability links
  - screen automatically different solutions for improvements.



## iii. Deriving automatically performance models from SOA software models



hSITE ARR2 June 17, 2011

#### **Model-driven software engineering**



- Software performance/dependability evaluation in the context of Model-Driven Engineering:
  - starting point: UML software model used also for code generation
  - add performance annotations (using specialized profiles such as MARTE)
  - generate a performance/dependability analysis model
    - queueing networks, Petri nets, stochastic process algebra, Markov chain, fault tree, etc.
  - solve analysis model to obtain quantitative results
  - analyze results and give feedback to designers



#### **Performance Analysis of SOA**

- PUMA4SOA model transformation
  - Source: UML+MARTE model
  - Target: performance model (LQN)
- The source model contains:
  - workflow model
  - service architecture model (dependencies, components)
  - service behaviour model
  - deployment
  - middleware overheads
- Model transformation steps:
  - Aspect-oriented approach for adding middleware overheads
  - Transformation 1: from source model to Core Scenario Model (CSM)
  - Transformation 2: from CSM to performance model (LQN)





#### Conclusions

- Our research is in the software engineering area, at the confluence of the following sub-areas:
  - Service-Oriented Architecture application to healthcare
  - Integrating context awareness within SOA applications and services
  - Enhancing SOA quality through SOA design patterns
  - Verification of SOA performance and dependability based on quantitative models generated form the software models
  - Model-driven development of service-oriented systems.
- We are getting ready to develop case-studies of service-oriented systems which support healthcare workflows that are the outcome of Theme 1.
  - will use model-driven development techniques and tools that change the development focus from code to models, raising the level of abstraction.