

DYNAMIC PATIENT SCHEDULING WITH TEMPORAL DEPENDENCIES Hadi Hosseini and Robin Cohen, {h5hossei,rcohen}@uwaterloo.ca

PROBLEM

Allocating sparse medical resources to patients for Emergency and Critical Care: We focus on four primary aspects of resource allocation:

- 1. Efficiency to balance costs and benefits
- 2. Dynamic model to capture uncertainties that are naturally imposed in such environments
- 3. Temporal constraints, i.e., interdependencies between tasks/resources
- 4. Fairness among patients in need of any subset of resources

MOTIVATION

- Problem is computationally intractable: current solutions cannot handle large-scale problems.
- Stochastic patient arrivals/departures and uncertain outcomes of medical steps.
- Health model of patients: different progression/diseases
- Temporal dependencies: Sequence in medical tasks (resources)

INTERACTION

Our model consists of two types of agents:

- 1. Patient agents model their local preferences and valuations over resources
- 2. Resource agents allocate the available timeslots to the patient agents

Key challenge: requiring multiple resources in a temporal order.

resource *i*) to the required resource.

Artificial Intelligence Group, David R. Cheriton School of Computer Science

APPROACH

- Independent Markov Decision Processes (MDPs) that provide local individual optimal actions (which resource to request next) considering future expected outcomes
- Auction-based coordination mechanism to find close-to-optimal global allocation of the decentralized MDPs
- Efficiency is defined in terms of maximizing social welfare (utility of agents)

ALGORITHMS FOR RESOURCE AND PATIENT AGENTS

Algorithm 1: Resource agents	Algorithm 2: Consumer agents: bidding
Input : Set of resources <i>R</i> , set of bids	mechanism
Output: Mapping of agents to timeslots	Input: A condition profile including a set of
1 initialization;	needed resources
2 foreach Timeslot t do	Output: Bid values, schedule
3 resource: open up auction for t :	// Initialization
4 $Bid_t \leftarrow receive(bid_i): // bid from agent i$	1 begin
5 $i_t = \arg\max_{i \in N} \{bid_i\}$: // awarding phase	2 $\Lambda_R \sim Dir(\boldsymbol{\alpha_r});$ // resource obtention
$alloc(A_{i}, t):$	3 $\Omega_{\psi} \sim Dir(\alpha_{\psi});$ // succession model
	4 Solve MDP;
Patient agents compute their expected regret for not obtaining a given resource as follows:	5 while r is nonempty do 6 forall the $r_i \in \mathbf{r}$, a, ψ do 7 $R_i(\psi, \mathbf{r}, a_i) = Q_i - \bar{Q}_i$
	8 foreach <i>Timeslot</i> t do
$R(h \mathbf{r} a) = O(-\bar{O}) $ (1)	9 $ \mathbf{r}^t \leftarrow \mathbf{r};$
$Q_{i} \equiv \sum_{\mathbf{r}'_{-i}} \sum_{h'} P(h' h, \mathbf{r}) V_{i}(r'_{i}, \mathbf{r}'_{-i}, h') \delta(\mathbf{r}_{-i}, \mathbf{r}'_{-i}) $ (2)	10 while \mathbf{r}^t is nonempty \wedge schedule ^t is empty
	do
	11 $i \leftarrow \arg \max_{i \in \mathbf{r}} \{R_i\};$
	12 submit bid^i to resource <i>i</i> :
	13 if <i>j</i> is winner then
	14 $undate(r_i, t)$:
where \mathbf{r}_{-i} is the set of all resources except r_i and	15 $remove r_i$ from r.
$f(x,y) = 1 \leftrightarrow x = y$ and 0 otherwise. This value	
s then submitted as the agent's bid (valuation over	16 else remove r_i from \mathbf{r}^{ι}
esource i) to the required resource	

$$R_i(h, \mathbf{r}, a_i) = Q_i - \bar{Q}_i \tag{1}$$

$$Q_i \equiv \sum_{\mathbf{r}'_{-i}} \sum_{h'} P(h'|h, \mathbf{r}) V_i(r'_i, \mathbf{r}'_{-i}, h') \delta(\mathbf{r}_{-i}, \mathbf{r}'_{-i})$$
(2)

TRANSITION MODEL

The transition function $P(\mathbf{r}', h' | \mathbf{r}, h, a)$ is factored into two models:

- Health progression (Succession) model independent of other patients: $P(h'|\mathbf{r}, h)$
- Resource acquisition model dependent on patient distribution (demand load) and can be updated through learning: $P(\mathbf{r}'|\mathbf{r}, h, a)$

SOCIAL WELFARE

We consider a utilitarian (or additive) social welfare function to evaluate the improvements in the society of agents:

where $\pi(s)$ is the allocation policy consisting of resource assignments (actions) at state vector *s*.

$$\mathcal{SW}(\pi) = \sum_{j} \sum_{a \in \pi(s)} R^{j}(s^{j}, a^{j})$$
(3)

We have simulated different scenarios: auctionbased MDP (auc-decMDP), first-come-first-serve (FCFS), and sickest-first where agents obtain required resources based on their condition profiles. Our solution scales easily to 100 agents and 30 resources, giving a close-to-optimal allocation in dynamic domains.

CONCLUSION AND FUTURE WORK

REFERENCES

• AI solutions to dynamic scheduling improve throughput/efficiency at reduced cost

• Maximizing social welfare does not lead to fair allocation; future work: give up some efficiency to improve on equity

• Preference representation and bidding languages: ways to succinctly represent agents' valuations over bundles of resources

• Hosseini, H. Hoey, J. and Cohen, "R. 2011. Multi-agent Patient Scheduling Through Auctioned Decentralized MDPs". In Proceedings of the 6th INFORMS Workshop on Data Mining and Health Informatics 2011, p73–78. • Hadi Hosseini, J. Hoey, R. Cohen,"A Market-based Coordination Mechanism for Resource Planning Under Uncertainty", Short paper in the Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI'12).(to appear)