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1. Introduction

I Novel approach to scheduling doctors, with a focus
on mass casualty incidents.

I Based on multiagent resource allocation (MARA)
and Transfer-of-Control strategies.

I Incorporation of user models and learning.

2. Patient scheduling as resource allocation

I Patient scheduling is a resource allocation problem,
timeslots are the “resources”.

I Patients value times based on personal preferences
and their condition.

3. Multiagent resource allocation

I Each patient is assigned a software agent.
I Distributed negotiations optimize the schedule.
I Trouble estimating the cost of losing resources.

4. Planning

I Agents use pre-planned strategies in negotiation,
called “Transfer-of-Control” (TOC) strategies[4][3].

I Strategies are made to maximize expected utility for
a patient, and minimize the bothering doctors.

I An example TOC strategy:

Ask Dr. Smith Ask Dr. Gupta Ask Dr. Holloway

I Full Transfer Of Control (FTOC): Request that the doctor take over treatment.
I Partial Transfer Of Control (PTOC): Ask the doctor a question or confirm that the plan is

still valid.
I Strategy Generation (SG): Generate a new TOC strategy.

5. Estimating Costs using Transfer-Of-Control
strategies

I The cost of preemption is the expected value of a
contingency plan, less the benefit of the resource.

I This is a high quality estimate of the costs of
changes in wait times and quality of care.

I Similar to micro-economic “Opportunity Costs”.

6. Learning

I Circumstances change with time, but agents can
adapt by learning.

I Let c(x) be an interaction cost, t(x) be an
interaction time.

I Bother Costs estimates [4]:

BSF =
∑
i∈I

c(i)βt(i)

Where i is an interaction, β is the learning rate.
I Plan Length estimates:

k =
1

1 +
∑

r∈R c(r)αt(r)

Where r is a regeneration, α is the learning rate.
I Congestion estimates:

EUplan =
1

1 +
∑

p∈P c(p)γt(r)

Where p is a preemption, γ is the learning rate.

7. Effects of Learning

I Bother models improve resource utilization.
I Congestion and Plan length estimate prevent

deadlock.
I Cost reduction from plan length optimization:
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7. Benchmarking

I We simulated the system to measure its
performance.

I The scenario is a mass casualty incident, where
many patients arrive simultaneously at a hospital
with few doctors.

I This is not intended to accurately model every detail
of a real-world scenario, but to provide an initial
characterization of the system.

8. Example Experiment: User Modeling

I Patients are modeled by a deterioration rate D(c)
and criticality (c).

I Scenario goal: Minimize the costs (T(c)), suffering
(S(c)) and percentages of ‘problem patients’.

I Total cost incurred by a single patient between T1
and T2 is:

9. Example Experiment: Doctor Model

I Following [3] doctors are modeled with a type and
degree of busyness.

I A bother model [4] tracks the impact of previous
system interactions on doctor willingness to
respond.

I Types capture the differences between, say, an
intern and a heart specialist.

10. Example Experiment: Algorithm

11. Example Experiment: Strategy Generation

I Strategies are generated using a new dynamic
programming approach.

I This approach requires improves upon those of
prior authors ([3][4]), requiring only O(2n) steps
instead of O(n!).

I A linear time algorithm can also produce good
approximations of the correct answer.

12. Results

I We compared our method to an implementation of
the algorithm from [1].

I The systems were evaluated against 100 randomly
generated sets of patients and doctors for each
parameter setting.

I This graph shows the performance differences
between the new algorithm and [1] in a low-critically
scenario with 15 doctors.
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13. Conclusions

I Learning agents adapt to changing circumstances,
and provide considerable efficiency gains.

I Using contingency plans improves performance.
I More work to be done:

I Further ablation studies
I Comparisons with real-world data
I Distributed implementation (e.g. on smart phones)
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