Smart Scheduling Using Transfer of Control Strategies for Multiagent Resource Allocation in Mass Casualty Scenarios

1. Introduction

» Novel approach to scheduling doctors, with a focus
on mass casualty incidents.

» Based on multiagent resource allocation (MARA)
and Transfer-of-Control strategies.

» Incorporation of user models and learning.

2. Patient scheduling as resource allocation

» Patient scheduling is a resource allocation problem,
timeslots are the “resources”.

» Patients value times based on personal preferences
and their condition.

3. Multiagent resource allocation
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» Each patient is assigned a software agent.
» Distributed negotiations optimize the schedule.
» Trouble estimating the cost of losing resources.

4. Planning

» Agents use pre-planned strategies in negotiation,
called “Transfer-of-Control” (TOC) strategies[4][3].

» Strategies are made to maximize expected utility for
a patient, and minimize the bothering doctors.

» An example TOC strategy:
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Ask Dr. Holloway

» Full Transfer Of Control (FTOC): Request that the doctor take over treatment.

» Partial Transfer Of Control (PTOC): Ask the doctor a question or confirm that the plan is
still valid.

» Strategy Generation (SG): Generate a new TOC strategy.

5. Estimating Costs using Transfer-Of-Control

strategies

» The cost of preemption is the expected value of a
contingency plan, less the benefit of the resource.

» This is a high quality estimate of the costs of
changes in wait times and quality of care.

» Similar to micro-economic “Opportunity Costs”.

6. Learning

» Circumstances change with time, but agents can

adapt by learning.
» Let ¢(x) be an interaction cost, #(x) be an

iInteraction time.
» Bother Costs estimates [4]:
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Where I Is an interaction, 3 is the learning rate.

» Plan Length estimates:
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Where r is a regeneration, « is the learning rate.

» Congestion estimates:
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Where p is a preemption, ~ Is the learning rate.

7. Effects of Learning

» Bother models improve resource utilization.

» Congestion and Plan length estimate prevent
deadlock.

» Cost reduction from plan length optimization:
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Detail of Plans

7. Benchmarking

» We simulated the system to measure its
performance.

» The scenario is a mass casualty incident, where
many patients arrive simultaneously at a hospital
with few doctors.

» This is not intended to accurately model every detall
of a real-world scenario, but to provide an initial
characterization of the system.

8. Example Experiment: User Modeling

» Patients are modeled by a deterioration rate D(c)
and criticality (c).

» Scenario goal: Minimize the costs (T(c)), suffering
(S(c)) and percentages of ‘problem patients’.

» Total cost incurred by a single patient between T1

and T2 is: .
COSt(Tl, TQ) m— / S(Ct) + T(Ct).dt
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with D(C) = %, so
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9. Example Experiment: Doctor Model

» Following [3] doctors are modeled with a type and
degree of busyness.

» A bother model [4] tracks the impact of previous
system interactions on doctor willingness to
respond.

» Types capture the differences between, say, an
intern and a heart specialist.

10. Example Experiment: Algorithm

1 WHILE( there are still untreated patients )
FOREACH Agent A
//Let each agent take the next step in its TOC strategy
execute_plan(A)
ENDFOR

//Patients deteriorate based on their conditions,
//Doctors treat assigned patients

9 update_simulation()

10 ENDWHILE

11

12 //Subroutine for executing the next step in a plan.
13 SUB execute_plan(Agent A)

14 IF( A has no plan)

15 generate_plan(A)

16  ELSE

17 execute(A->plan->next()) //execute the next TOC world.
18  ENDIF

19 ENDSUB
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11. Example Experiment: Strategy Generation

» Strategies are generated using a new dynamic
programming approach.

» This approach requires improves upon those of
prior authors ([3][4]), requiring only O(2") steps
instead of O(n!).

» A linear time algorithm can also produce good
approximations of the correct answer.

12. Results

» We compared our method to an implementation of
the algorithm from [1].

» The systems were evaluated against 100 randomly
generated sets of patients and doctors for each
parameter setting.

» This graph shows the performance differences
between the new algorithm and [1] in a low-critically
scenario with 15 doctors.

Difference in Mean Percentage Problem Patients

25 Patients
—— 50 Patients
—— 100 Patients

200 Patients

400 Patients

40

30
I

20

Mean Difference in % Problem Patients

10

—= o I

#Patients

13. Conclusions

» Learning agents adapt to changing circumstances,
and provide considerable efficiency gains.

» Using contingency plans improves performance.
» More work to be done:

» Further ablation studies

» Comparisons with real-world data

» Distributed implementation (e.g. on smart phones)
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