Smart Scheduling Using Transfer of Control Strategies for Multiagent Resource Allocation in Mass Casualty Scenarios

1. Introduction

» Novel approach to scheduling doctors, with a focus
on mass casualty incidents.

» Based on multiagent resource allocation (MARA)
and Transfer-of-Control strategies.

» Incorporation of user models and learning.

2. Patient scheduling as resource allocation

» Patient scheduling is a resource allocation problem,
timeslots are the “resources”.

» Patients value times based on personal preferences
and their condition.

3. Multiagent resource allocation

{ Doctor Model } { Patient Model J

A A

Confirm Verify Verify Confirm
) J Y
Y

p
Patient Agent / \
j .

A

S

Ask Respond

® O
I )

A

» Each patient is assigned a software agent.
» Distributed negotiations optimize the schedule.
» Trouble estimating the cost of losing resources.

4. Planning

» Agents use pre-planned strategies in negotiation,
called “Transfer-of-Control” (TOC) strategies[4][3].

» Strategies are made to maximize expected utility for
a patient, and minimize the bothering doctors.

» An example TOC strategy:

‘--

Ask Dr. Holloway

» Full Transfer Of Control (FTOC): Request that the doctor take over treatment.

» Partial Transfer Of Control (PTOC): Ask the doctor a question or confirm that the plan is
still valid.

» Strategy Generation (SG): Generate a new TOC strategy.

5. Estimating Costs using Transfer-Of-Control

strategies

» The cost of preemption is the expected value of a
contingency plan, less the benefit of the resource.

» This is a high quality estimate of the costs of
changes in wait times and quality of care.

» Similar to micro-economic “Opportunity Costs”.

6. Learning

» Circumstances change with time, but agents can

adapt by learning.
» Let ¢(x) be an interaction cost, #(x) be an

iInteraction time.
» Bother Costs estimates [4]:

BSF =) ¢(i)g'"
icl

Where I Is an interaction, 3 is the learning rate.

» Plan Length estimates:
1

1+ ZreR c(r)at(r)

k =

Where r is a regeneration, « is the learning rate.

» Congestion estimates:

E Uplan —

1

1+ ZpeP c(p)'Yt(r)
Where p is a preemption, ~ Is the learning rate.

7. Effects of Learning

» Bother models improve resource utilization.

» Congestion and Plan length estimate prevent
deadlock.

» Cost reduction from plan length optimization:

Effect of Planning

Detail of Plans

7. Benchmarking

» We simulated the system to measure its
performance.

» The scenario is a mass casualty incident, where
many patients arrive simultaneously at a hospital
with few doctors.

» This is not intended to accurately model every detall
of a real-world scenario, but to provide an initial
characterization of the system.

8. Example Experiment: User Modeling

» Patients are modeled by a deterioration rate D(c)
and criticality (c).

» Scenario goal: Minimize the costs (T(c)), suffering
(S(c)) and percentages of ‘problem patients’.

» Total cost incurred by a single patient between T1

and T2 is: .
COSt(Tl, TQ) m— / S(Ct) + T(Ct).dt

11

with D(C) = %, so

t
Ct = Ct, .. —|-/ D(C)dt
tinit

9. Example Experiment: Doctor Model

» Following [3] doctors are modeled with a type and
degree of busyness.

» A bother model [4] tracks the impact of previous
system interactions on doctor willingness to
respond.

» Types capture the differences between, say, an
intern and a heart specialist.

10. Example Experiment: Algorithm

1 WHILE( there are still untreated patients )
FOREACH Agent A
//Let each agent take the next step in its TOC strategy
execute_plan(A)
ENDFOR

//Patients deteriorate based on their conditions,
//Doctors treat assigned patients

9 update_simulation()

10 ENDWHILE

11

12 //Subroutine for executing the next step in a plan.
13 SUB execute_plan(Agent A)

14 IF( A has no plan)

15 generate_plan(A)

16  ELSE

17 execute(A->plan->next()) //execute the next TOC world.
18  ENDIF

19 ENDSUB

UNIVERSITY OF

WATERLOO

11. Example Experiment: Strategy Generation

» Strategies are generated using a new dynamic
programming approach.

» This approach requires improves upon those of
prior authors ([3][4]), requiring only O(2") steps
instead of O(n!).

» A linear time algorithm can also produce good
approximations of the correct answer.

12. Results

» We compared our method to an implementation of
the algorithm from [1].

» The systems were evaluated against 100 randomly
generated sets of patients and doctors for each
parameter setting.

» This graph shows the performance differences
between the new algorithm and [1] in a low-critically
scenario with 15 doctors.

Difference in Mean Percentage Problem Patients

25 Patients
—— 50 Patients
—— 100 Patients

200 Patients

400 Patients

40

30
I

20

Mean Difference in % Problem Patients

10

—= o I

#Patients

13. Conclusions

» Learning agents adapt to changing circumstances,
and provide considerable efficiency gains.

» Using contingency plans improves performance.
» More work to be done:

» Further ablation studies

» Comparisons with real-world data

» Distributed implementation (e.g. on smart phones)

Bibliography

[1] T. O. Paulussen, A. Ziller, A. Heinzl, A. Pokahr, L. Braubach, and W.o Lamersdorf,
Dynamic Patient Scheduling in Hospitals., Agent Technology in Business Applications,
2004

[2] Hyunggu Jung, Reasoning about Benefits and Costs of Interaction with Users in
Real-time Decision Making Environments with Application to Healthcare Scenarios,
Master of Mathematics thesis, University of Waterloo, Waterloo, Ontario, 2010.

[3] Robin Cohen, Hyunggu Jung, Michael Fleming, and Michael Y.K. Cheng, A User
Modeling Approach for Reasoning about Interaction Sensitive to Bother and Its
Application to Hospital Decision Scenarios, Special Issue on Personalization in e-Health,
User Modeling and User-Adapted Interaction, January 2011.

[4] Robin Cohen, Michael Y.K. Cheng and Michael W. Fleming, Why bother about bother: Is
it worth it to ask the user?, AAAIa05 Fall Symposium on Mixed-Initiative Problem-Solving
Assistants, 2005




