
 hSITE ARR3 page 1
June 4-5, 2012

Context-Aware
Service-Oriented Systems

Dorina C. Petriu

Carleton University
Department of Systems and Computer Engineering

Ottawa, Canada, K1S 5B6
http://www.sce.carleton.ca/faculty/petriu.html

 hSITE ARR3 page 2
June 4-5, 2012

Research Team

Name of student / PDF

and email address

Program

MSc/PhD/

PDF/

u-grad

Task #

(Specify

if PRP)

hSITE

Start

date

Graduation

date (actual

or

anticipated)

Funded by:

hSITE

and/or other

Alhaj, Mohammad

malhaj@sce.carleton.ca
Ph.D.

1.2.2 and

2.1.1

May

2009
August 2012 hSITE

Mani, Nariman

nmani@sce.carleton.ca
Ph.D. 2.1.1 Jan 2010 August 2013 other

Khan, Muhammad

Kaleem

mkalim@sce.carleton.ca

M.App.Sc. 1.2.2 Sept 2010 Dec. 2012
hSITE +

other

Vrbaski, Mira

mvrbaski@connect.carle

ton.ca

M.App.Sc. 2.1.1 Sept 2009 Sept 2012
part-time

student

Gunter Mussbacher

gunter@sce.carleton.ca
postdoc 2.1.1 Jan 2011 Dec 2012

other +

hSITE

 hSITE ARR3 page 3
June 4-5, 2012

Objectives

Theme 2, Project 2.1, Task 2.1.1:

1. Integrating context awareness in Service-Oriented Architecture (SOA)

 Last year: designed a framework composed of open-source
components for integrating context-awareness within SOA

 New: Context-Aware Reasoning using Goal-Orientation (CARGO) -
extend the context-aware reasoning approach based on rules with
goal-oriented models evaluated at runtime, to provides more
flexibility and configurability
(see poster by Mira Vrbaski and Gunter Mussbacher)

2. Investigating Performance Effects of SOA design patterns. Addressing the
problem of service architecture quality by applying SOA design patterns.

 Each design pattern aims to improve a given software characteristics
(functional or non-functional) and has performance side-effects,
which are evaluated with the help of performance models.

3. Automatic derivation of performance models from SOA software models.

 This year, the model transformation has been enhanced by
considering separately the platform effects modeled as aspects.

 hSITE ARR3 page 4
June 4-5, 2012

1. Context-Aware Reasoning using
Goal-Orientation (CARGO)

 hSITE ARR3 page 5
June 4-5, 2012

Context

 Context definition: any information that can be used to characterize the

situation of an entity.

 entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and

the application themselves.

 Context includes the following environmental aspects:

 computing environment: available processors, devices accessible for

user input and display, network capacity, connectivity, and costs of

computing;

 user environment: location, collection of nearby people, social situation;

 physical environment: lighting and noise level.

 Context awareness:

 the ability of a system to adapt to an ever-changing context

 proactively anticipate the user’s needs without placing the burden on

the user

 hSITE ARR3 page 6
June 4-5, 2012

Context-aware SOA

 SOA (Service-Oriented Architecture):

 architectural paradigm where applications are composed from loosely

coupled reusable services to create flexible business processes and agile

applications that span organizations and computing platforms.

 Context-aware SOA:

 integrating context-awareness in SOA by means of special services for:

 acquiring and monitoring the context of different entities

 abstracting and understanding the context

 providing context information to other services when needed

 triggering actions based on the context

 context-aware services make use of different levels of contexts and

adapt the way they behave according to context reasoning based on

pre-defined rules

 context-aware services are composed at runtime with the purpose of

executing context-aware applications described by business workflows

 hSITE ARR3 page 7
June 4-5, 2012

Context-aware Goal Modeling

 Goal modeling is an early requirements technique focuses on:

 modeling stakeholders and their high-level goals;

 modeling solutions and their impact on achieving the goals;

 key performance indicators, i.e., real-world measures that characterize

the proposed solutions.

 Goal models can be evaluated:

 assessment of a solution results in satisfaction values for stakeholders;

 trade-off analysis compares the proposed solutions taking the

satisfaction values of all stakeholders into account.

 In context-aware systems:

 a Goal Engine can complement a logic-based Rule Engine by allowing a

more holistic assessment of the context while taking the goals of many

stakeholders into account;

 key performance indicators capture context-related information,

making it available for reasoning at the goal level.

 hSITE ARR3 page 8
June 4-5, 2012

2. Performance effects
of SOA design patterns

 hSITE ARR3 page 9
June 4-5, 2012

Objective

 Service Oriented Architecture (SOA) design patterns provide
generic solutions for many architectural, design and
implementation problems

 any pattern may have an impact on performance, either positive
or negative.

 Objective: study the performance impact of a SOA design
pattern applied to a system in early development phases

 The planned approach exploits the context of model driven
engineering (MDE): SModel →PModel

 PUMA model transformation chain is used to generate the initial
PModel of the system

 A SOA design pattern is applied to SModel and the change is
propagated incrementally to PModel.

 hSITE ARR3 page 10
June 4-5, 2012

Overview of the Proposed Approach

Choose Design Pattern

Incremental SModel and PModel changes

SModel
Model

Transformation
PModel

SOA Pattern
Application rules

SOA Pattern

3 . Extracting
Application Rules

Applying Changes
To PModel

Performance
Analysis

Results

4 . Determine the

Pattern Image in PModel :

a) affected SModel Elements

b) PModel changes

Non Functional

Properties
Analysis Results

1. Identify the Problem
2 . Choose SOA Design Pattern

which addresses the problem

Non Functional
Properties Analysis

Performance
Analysis

PModel
Changes

 hSITE ARR3 page 11
June 4-5, 2012

Research status

 Concerned with the quality of a service-oriented system, which can be

improved by applying SOA design patterns.

 Propose an approach to propagate changes due to the application of SOA

design patterns from the SModel to the corresponding PModel

 incremental model transformation to speed up the change propagation

 Current status

 general approach for incremental change propagation was developed

 traceability links have been defined

 “role-based modeling” is used to formally define the change brought by

a pattern

 Future work

 automate incremental change propagation from SModel to PModel for

different patterns by implementing the proposed approach

 apply it to many SOA patterns from literature

 screen automatically different solutions for improvements.

 hSITE ARR3 page 12
June 4-5, 2012

3. Automatic derivation of
performance models from

SOA software models

 hSITE ARR3 page 13
June 4-5, 2012

Objectives

 Automatic approach for deriving performance models from
UML software models to evaluate the run time performance of
SOA systems in the early development phases.

 performance models: queueing network, Layered Queueing
Networks (LQN) Petri nets, Stochastic Process Algebra

 the software models are extended with performance annotations

 Why: early performance evaluation helps in choosing the
appropriate architecture and design alternatives to meet the
performance requirements.

 Separation of concerns when modeling platform overheads

 the starting point is a Platform-Independent Model (PIM) of a
SOA system (business workflow and services)

 Platform operations are represented as “aspect models”

 a Platform-Specific Model (PSM) is obtained by weaving
platform services into the Platform-Independent Model.

 hSITE ARR3 page 14
June 4-5, 2012

Transformation chain

 PUMA4SOA model transformation

 Source model: UML+MARTE model (structure, behaviour, deployment)

 Target model: performance model (LQN)

 Intermediate model: Core scenario Model (CSM)

 Model transformation steps:

 Aspect-oriented approach for adding middleware overheads

 Transformation 1: from source model to Core Scenario Model (CSM)

 Transformation 2: from CSM to performance model (LQN)

 hSITE ARR3 page 15
June 4-5, 2012

Source PIM: Service Behaviour Model

join points

for platform

aspects

 hSITE ARR3 page 16
June 4-5, 2012

Generic aspect model: Service Request Invocation
(behaviour view)

marshaling (to XML)

unmarshaling (from XML)

SOAP message

Note: there is a similar model for the service response operation

 hSITE ARR3 page 17
June 4-5, 2012

PSM: scenario after composition

composed service

invocation aspect

composed service

response aspect

 hSITE ARR3 page 18
June 4-5, 2012

Example of performance results:
coarse Vs. fine service granularity

 The compared configurations are similar in number of resources
(processors, disks and threads) except that the second performs fewer
service invocations through the web service middleware.

 The difference in response time and throughput is due only to the
difference in platform overheads

e) Finer and Coarser service granularity: Response time

vs, # of Users

0

10

20

30

40

50

60

0 20 40 60 80 100 120

of Users

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Finer service granularity

Coarser service granularity

f) Finer and Coarser service granularity: Throughput vs.

of Users

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 20 40 60 80 100 120

of Users

T
h

ro
u

g
h

p
u

t

Finer service granularity

Coarser service granularity

 hSITE ARR3 page 19
June 4-5, 2012

Conclusions

 We conduct research is in the software engineering area, at the

confluence of the following sub-areas:

 Service-Oriented Architecture application to healthcare

 Context aware SOA enhanced through goal models

 Enhancing SOA quality through SOA design patterns

 Verification of SOA performance and dependability based on

quantitative models generated form the software models

 Collaboration for Years 4 and 5 to integrate multi-sensor fusion

algorithms developed at the University of Ottawa with the

context aware SOA framework.

 Build multi-sensor fusion services using lower-level context aware

services which, in turn, can be invoked from higher level services

or business processes.

