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 Math

— Simulation tools for statistical analysis
— Adaptive importance sampling

— Convergence of Markov Chain Monte Carlo &
Parallelization Multicanonical Monte Carlo

o Skulls

— Low-power impulse radio telemetry for neuroscience
applications

— Antennas designed to operate within the skull

Outline




»

Research Team

Hadi Bahrami
Ph.D. candidate

Charles Brunet
MSc student




Problem Statement
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,’\\\ Simulating Rare Events
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« Analytical solutions: fast but not generalizable
Traditional Monte Carlo

— Extremely general approach

— Computationally inefficient
« 1012 samples to reach 1019 BER

Importance Sampling
— Somewhere in between on complexity
— Not at all general

Multicanonical Monte Carlo
— Adaptive importance sampling

instantaneous 10° samples 102 samples

Analytical

general general
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Adaptation

Multicanonical Monte Carlo (MMC)

UNWARPED
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(unbiased)

A

£ ()= £9(x) | HY (y) e

(y)
A lterative ‘ ’\
e WARlPING | |

“weird” distributions

u



»

Parallelization of MMC

erial MCMC

great for “weird”
distributions!

Given multiple uncertainties on convergence, how to capture

efficiency of parallelization???
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« Capturing convergence

— When you know the right answer
— When “truth” is NOT known

Challenges

* Quantifying Efficiency
— When you know the right answer
— How results vary with the system under test
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Faster simulation algorithms allow simulation of Performance of PMMC for 32 distribution
more complex and realistic models.
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Background

Listening to Brain Microcircuits
for Interfacing With External
World—Progress in Wireless
Implantable Microelectronic
Neuroengineering Devices

Experimental systems are described for electrical recording in the brain using multiple
microelectrodes and short range implantable or wearable broadcasting units.
By ArTo V. NURMIKKO, Fellow IEEE, JouN P. DoNOGHUE, LE1GH R. HOCHBERG,

WiLLIAM R. PATTERSON, Member IEEE, YooN-Kyu SonGg, CHRISTOPHER W. BULL,
Davin A. BORTON, FARAH LATWALLA, SUNMEE PARKE, YIN MING, AND JUAN ACEROS, Member IEEE
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* High density
SEeNsors
— 100 per array

— Single neural
cell resolution

— 100 signals to
capture &
transmit

 Tethered vs.
untethered

Research Trends

Fig. 1. A silicon-based cortical microelectrode array (inset);
implanted for intracortical neural microcircuit recording via a
percutaneous connection to a skull mounted pedestal connector

(main figure schematic).
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« Transition from infrared to radio signals
— No "line of sight” required
« Antenna instead of VCSELS

— ldeally under skull
— Under skin is a practical compromise

Antenna Placement

o External to head:
IR data Out/RF Power in

Cranial Unit: Microcircuits for
ADC + Telemetry + Power

Primate Skull

Dura
MEA + Preamp/MUX chip

Motor Cortex
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« Model the channel from inside skull to an
outside body receiver

« Design antenna arrays for UWB
transmissions

« Avoid tissue damage while increasing bit
rate of transmissions
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©  Multi-Layer Model of tissues defined for
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‘of the Biological Channel for
B Neural Recording Systems

Main issues of the proposed realistic modeling

asa i the UWB frequency band in HFSS software.

UWB 1 as d

o

another monopole as ece

o

Discussing two scenario:
above the skull) in the fr

table transmitter (the transmitter under the skull and the transmitter
‘brain monitoring.

o Calculating the path loss and
sensitivity of the receiver with

Channel Modeling And Simulation Simulation Results

© Acceptable Performance for UWB Antenna

*  The return loss of the UWB antenna is below -10 dB.
*  Directivity is above 0 dB.

HFSS software

Each layer has the specific dielectric properties
of the tissues must be taken into account in the
design of the implantable antenna.

Two Scenarios for Location of the Wireless
 Implantable Transmitter

is that transmitter is under skull

is that transmitter is top skull
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The worse case and the best case:
Type of Tissues
Skin

Best Case Worst Case

e

second scenario has a maximum gain of around

scenario is 7.16 mW, and 5.16 mW for the second

Note that the ANSI restrictions are greater than those
by the ANSI criteria.

Conclusion and Outlook

O We have introduced a
© We reported the simulation

© The maximum power allowed to taking into account limits imposed by both the ANSI and the FCC was determined to be §
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Antenna design
results (simulation)

— under skull and on
cortex

— top skull and inside
head



