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MMSE Estimator for linear non-Gaussian Dynamic Systems 

Introduction 

Suppose a discrete-time linear dynamic state space sys-
tem with the following state and measurement equations: 

 (1) 

 (2) 

Where: 
•  is the unobservable state sequence 
•  is the observable measurement sequence 
•  and , are i.i.d. random vectors 

with known pdfs  and  
•  and  are known matrices 

The objective of Bayesian tracking is to find a probabilistic 
estimation of the unobservable current state, given the 
available measurements. This is done by recursively esti-
mating the posterior, . If the noise vectors  and 

, are Gaussian, the posterior is Gaussian, and its pa-
rameters are optimally estimated by a Kalman filter. 

Non-Gaussian Noise 

In this work we have used Gaussian Mixtures to model the 
non-Gaussian noise pdfs, since they can approximate the 
distribution as closely as desired and this estimation is as-
ymptotically unbiased. Additionally, they are mathemati-
cally tractable. Hence, the process noise and measure-
ment noises can be approximated as  ܞk

kܟ (3) 
 (4) 

Using the GMM approximations the dynamic system de-
fined in Eq. (1)-(2), can be described as a multiple model 

system, with k k  representing 

the different clusters of the process and measurement 
noises. Hence, the posterior can be partitioned as 

 (5) 

where,  can be approximated by a Gaussian,  

since it has a mode-conditioned Gaussian process and 
measurement noise, and . 

Gaussian Sum Filters 

In Gaussian Sum Filters,  in Eq. (5) is ap-
proximated using a Kalman filter. Hence, the filter is com-
posed of k k  parallel Kalman filters, corresponding to 
the modes of the posterior pdf in Eq. (5). If we denote the 
estimated state and covariance matrix of filter , by  

and , respectively, the total estimated state and esti-

mation error covariance matrix can be evaluated as: 

 (6) 

 (7) 

Kalman filter provides the MMSE state estimation, as it 
minimizes the trace of the state estimation error covari-
ance matrix. However, we can see that for GSF, the total 
estimation error covariance (Eq. (7)) also has the spread 
of means of the clusters which is not minimized with the 
Kalman gains . 

MMSE Estimator 

The MMSE estimator is a modification of GSF in the sense 
that the individual filter gains,  are evaluated such that 
the trace of the total estimation error covariance matrix in 
Eq. (7) is minimized. This is done by writing 

 
(8) 

 (9) 

where, , , , and  are the predicted state, 

state prediction covariance matrix, predicted measure-
ment, and measurement prediction covariance matrix re-
spectively, and are evaluated using Kalman’s prediction 
step of filter . Using Eq. (8)-(9) in Eq. (7), and setting k|k݆݇݅ , we have 

, 

where . 

Simulation Results 

The proposed filtering method is compared with GSF, by 
running simulations on synthetically generated data (Fig-
ure(1)) and experimental data (Figure(2)). The perform-
ance metrics used for comparison are Root-Mean-Square 
Error (RMSE) and Circular Error Probable (CEP). Since 
the number of posterior modes increase exponentially 
over time, after each update we remove the clusters with 
smaller weights.  

Table 1: RMSE and CEP for GSF and MMSE estimator 

Filter Data RMSE CEP 
MMSE estimator Synthetic 0.9144 0.6832 
GSF synthetic 1.4380 1.0406 
MMSE estimator Experimental 42.5749 20.3706 
GSF Experimental 204.1124  178.3923 

The MMSE estimator shows better performance when 
compared with GSF, as it minimizes the total state estima-
tion covariance, including the spread of means. Conse-
quently, in GSF the variance of cluster means is larger.  
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Figure 1: Cluster centers for GSF (left) and MMSE filter (right) for synthetic data 

 
Figure 2:Cluster centers for GSF (left) and MMSE filter (right) for experimental 

data 


