

Motivation

In some healthcare senarios, providing a stable communication ture is not possible

- emergency or disaster situations
- prohibition of high-power electromagnetic waves

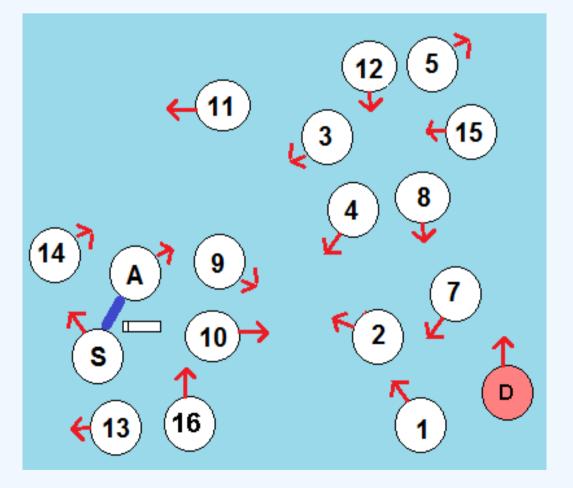
Practical Scenarios [1]:

- detect clinical deterioration through patient montoring in hosp
- enhance first responders' capability to provide emergency disasters through automatic electronic triage
- improve life quality of elderly through smart enviroments
- enable large-scale field studies of human behavior and chroni

Opportunistic networking is a good candidate for mobility and co service even in the absence of any stable communication infras

Main Characteristics:

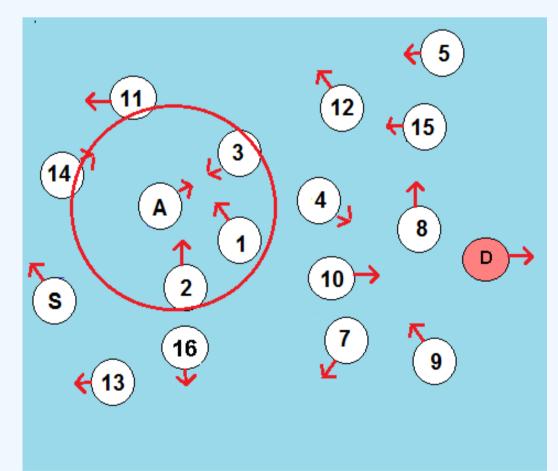
- node mobility
- random movement pattern
- no pre-determined end-to-end routes 💒
- store-carry-forward fashion


Main Question:

- WHEN to forward a message and to WHOM

©ABC TV Show: Gr

Background


- replication based forwarding : Epidemic [2]
- history based forwarding : Prophet [3]
- social based forwarding : SimBet [4], Bubble [5]

t = 1**Epidemic Routing:** A forwards the packet to 1, 2 and 3.

SimBet:

A forwards the packet to 1 and 2 because they have had 'similarity' with the destination in terms of shared neighbors.

t=2

Prophet:

A forwards the packet to 1 because it has recently been in touch with the destination.

BubbleRap:

A forwards the packet to 3 as well as 1 because 3 has been in contact with a lot of people.

Shohreh Shaghaghian, Divya Alok Sharma, Mark Coates

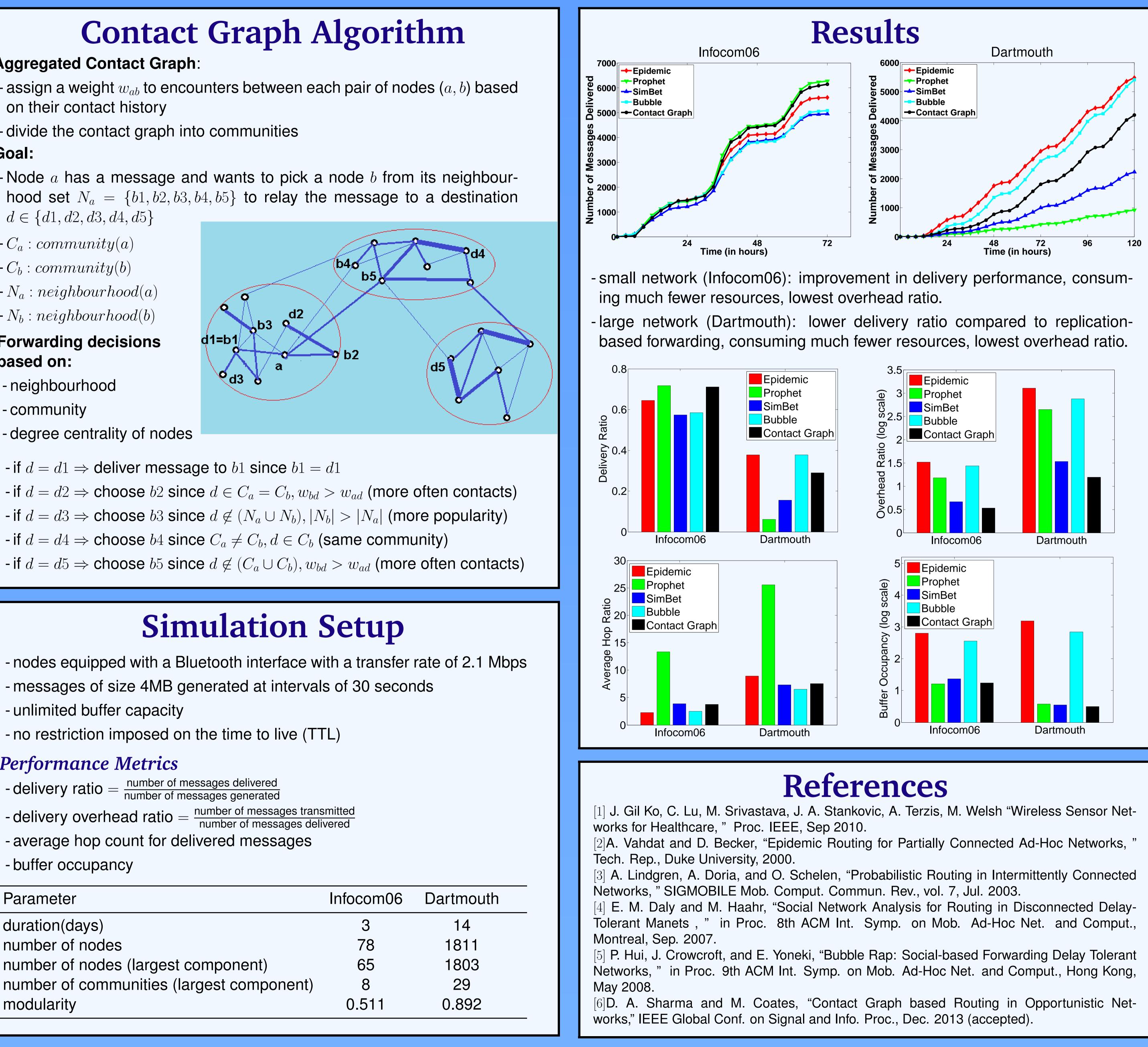
shohreh.shaghaghian@mail.mcgill.ca,
divya.a.sharma@mail.mcgill.ca, mark.coates@mcgill.ca

	-			
		Contact Graph A		
on infrastruc-		Aggregated Contact Graph:		
		- assign a weight w_{ab} to encounters between ear on their contact history		
		- divide the contact graph into communities		
		Goal:		
oital care in large		-Node <i>a</i> has a message and wants to pick a hood set $N_a = \{b1, b2, b3, b4, b5\}$ to relay the $d \in \{d1, d2, d3, d4, d5\}$		
		- C_a : $community(a)$		
nic disasters		- C_b : $community(b)$		
		- N_a : $neighbourhood(a)$	0	
ontinuity of		- N_b : $neighbourhood(b)$		
structure.		Forwarding decisions	d1=b1	
		based on:	a	
		- neighbourhood	ି d3 👌	
		- community		
		- degree centrality of nodes		
		- if $d = d1 \Rightarrow$ deliver message to $b1$ since $b1 =$		
ey's Anatomy		- if $d = d2 \Rightarrow$ choose $b2$ since $d \in C_a = C_b, w_{bd} >$		

- if $d = d5 \Rightarrow$ choose b5 since $d \notin (C_a \cup C_b), w_{bd} > w_{ad}$ (more often contacts)

Simulation Setup

- nodes equipped with a Bluetooth interface with a transfer rate of 2.1 Mbps
- messages of size 4MB generated at intervals of 30 seconds
- unlimited buffer capacity
- no restriction imposed on the time to live (TTL)


Performance Metrics

- delivery ratio = $\frac{\text{number of messages delivered}}{\text{number of messages generated}}$
- delivery overhead ratio $= \frac{\text{number of messages transmitted}}{\text{number of messages delivered}}$
- average hop count for delivered messages
- buffer occupancy

Parameter	

duration(days) number of nodes number of nodes (largest component) number of communities (largest component) modularity

