2013 hSITE Annual Research Review Monday, 18 Nov., 2013 Montreal, Canada

### UBIQUITOUS VITAL SIGN CAPTURE AND ASSET MANAGEMENT IN CLINICAL ENVIRONMENTS

Tho Le-Ngoc, Quang-Dung Ho, Thanh-Ngon Tran, Robert Morawski Yang Wu, Hoai-Phuoc Truong Department of Electrical & Computer Engineering

#### Abstract



- This presentation reports system design, implementation and experimentation of a ubiquitous patient vital sign capture system (namely uVS) and a portable asset tracking and management system (namely pATMS) for clinical environments.
- uVS provides end-to-end connectivity between patient monitors and EHR by using smartphones. By replacing manual operations with automatic machine-to-machine (M2M) communications, uVS aims to enhance reliability, save time and costs for patient monitoring routines carried out in hospitals, clinics and emergency sites. uVS also allows medical staff to access patient files and charts from anywhere at any time in order to have fast and efficient responses to emergency situations.
- pATMS is a software suite built on top of an off-the-shelf real-time location system that allows users to locate any object of interest by simply using any networked devices (smartphones, tablets, ...). With pATMS, nurses and doctors can quickly search for medical devices (e.g., ultrasound machine, nursing stations, ...) that are required for patient care and treatment. This system also supports various smart asset management applications: track the usage and maintenance/software/firmware update history, prevent theft and vandalism, etc., of important and valuable hospital assets.

### Content



#### Ubiquitous Vital Sign Capture



- System design and implementation a ubiquitous vital sign capture platform which provides end-to-end connectivity between patient monitors and EHR by using smartphones
- On-going research



- Development of a software platform (on top of a RTLS) which brings maps and asset management application interfaces to personal mobile devices
  - On-going research

These research items are for Task 3.1.3 (*Sensors and Ad-hoc Networking*) and Task 3.2.1 (*Multiple-antenna Wireless Communications*) of Theme 3 (*Enabling Networks and Technologies*)





#### Ubiquitous Vital Sign Capture



#### Wireless Continuous Patient Monitoring in Emergency Room





#### Wireless Continuous Patient Monitoring in Emergency Room









**RTLS Servers** 



Signal Strengt

Connect to 6 Connect to 8 Connect to 7 Connect to 5 Connect to Cancel

#### **Clinical Workflow Analysis and Improvement**





## UBIQUITOUS AND END-TO-END VITAL SIGN CAPTURE USING SMARTPHONES



ARR 18 Nov. 2013 Montreal

### **Manual Vital Sign Capture**







Temperature: 97.9oF SYS: 120mmHg DIA: 78mmHg Palse: 68/min Sat: 99% Respiration: 20/min M Read and then record data by hand writing



### **Automatic Vital Sign Capture**









✻

## Record data by one click

### Summary



- Develops a ubiquitous vital sign capture platform, namely uVS, which provides end-to-end connectivity between patient monitors and EHR by using smartphones
- By replacing manual operations with automatic M2M communications, uVS aims to enhance reliability, save time and costs for patient's monitoring routines carried out in hospitals, clinics and emergency sites
- uVS also allows medical staff to access to patient health conditions and other information (e.g., medications, prescriptions, medical treatment history, etc.) from EHR from anywhere at anytime in order to have fast and efficient responses to emergency situations

#### **Advantages**



#### **Reduce mistakes**

manual data input is replaced by M2M fully automatic data capture

#### Simplicity

a universal GUI can be used with different patient monitor devices

#### **Save time**

all vital signs are captured by one click

#### **Cost efficiency**

existing patient monitors are used

#### **Ubiquitous**

data is accessible everywhere

#### **Environment**

paperless workflow saves the environment

### **Applications**



#### **Hospitals**

Nurses periodically measure patient's VSs



#### Home healthcare

Nurses/patients regularly check patient's health conditions





### Emergency situations

Attendants report victim's conditions to hospitals to get additional supports



#### **Remote diagnosis**

Specialists help doctors diagnose patients requiring special attention

ARR 18 Nov. 2013 Montreal

### **System Architecture**





### **End-to-End Connectivity**





VS capture (*patient bedside*)

### **M2M Communications**











ARR 18 Nov. 2013 Montreal

### **BLE Profiles**





### **Host Comm. Protocol**





### **D**

#### Patient monitor

Indicates brand and model of the monitor currently paired with the smartphone

#### Patient

Indicates name and ID of the patient currently monitored by the monitor Tab it to select to another patient



#### GUI to capture VSs

| •                                 |                     |  |  |  |  |
|-----------------------------------|---------------------|--|--|--|--|
| ROGERS LTE 12:42<br>Monitor GE DI | AM <b>1</b><br>N400 |  |  |  |  |
| Mathew, Lee                       | MR 53438923         |  |  |  |  |
| TEMP (oC)                         | 38                  |  |  |  |  |
| SYS (mmHg)                        |                     |  |  |  |  |
| DIA (mmHg)                        |                     |  |  |  |  |
| HR (bpm)                          |                     |  |  |  |  |
| <b>SpO</b> <sub>2</sub> (%)       |                     |  |  |  |  |
| RR (/min)                         |                     |  |  |  |  |
| Cancel Last                       | File Read           |  |  |  |  |
|                                   |                     |  |  |  |  |



#### **End-user Interfaces**





Patient file

#### **End-user Interfaces**



|                                  | -                             | Home Patien                             | ts <u>Staff</u> | <u>Assets</u>            | Contact                             | <u>Dr. Abraham</u> | Log off  |
|----------------------------------|-------------------------------|-----------------------------------------|-----------------|--------------------------|-------------------------------------|--------------------|----------|
|                                  | Name<br>Birthdate<br>Medicare | Mathew, Lee<br>17/5/1982<br>MR 53438923 |                 | Temp<br>Systol<br>Diasto | <mark>erature</mark><br>lic<br>blic | Heart rate<br>SpO2 |          |
| 41<br>40<br>39<br>38<br>37<br>36 | 27/07/13                      |                                         |                 |                          |                                     | -                  | 28/07/13 |
| 35<br>34<br>33                   |                               |                                         |                 |                          |                                     |                    |          |

#### **Patient charts**



- Wireless communications and networking: key technologies enabling ubiquitous patient monitoring
  - Routing and dynamic configuration in wireless medical sensor networks: interference management, energy efficiency, reliability and robustness, quality of service provisioning, ...
    - Electromagnetic-interference-aware routing
    - Cluster-based routing
    - Multipath routing, network-coding-aware routing
    - Cloud computing & wireless virtualization
- User interface design and workflow optimization: user-oriented, easy to use, convenient & efficient, time & cost saving, ...



## PORTABLE RTLS AND ASSET MANAGEMENT APPLICATIONS



### **Real-time Location System (RTLS)**



- RTLS provides information regarding where people and assets are located
- Various applications in healthcare
  - Locate healthcare personnel
  - Track the movements of patients
  - Track equipment
  - Assist emergency response
  - Analyze and improve clinical workflows

#### Benefits

- Improve patient safety
- Improve patient/family satisfaction
- Boost productivity of nurses and caregivers



### **Existing RTLSs**



- Access to the map is within the LAN
- Time-consuming setup procedure is required on each RTLS client
- Applications are very limited

#### Summary



- Builds up a software platform on top of a RTLS to allows users to locate any object of interest by simply using smartphones from anywhere and at any time
- With this platform, nurses and doctors can quickly search for medical devices (e.g., ultrasound machine, nursing stations, ...) that are required for patient care and treatment
- This platform also supports various smart asset management applications: track the usage and maintenance/software/firmware update history, prevent thieves and vandalisms, etc., of important and valuable hospital assets

#### **Advantages**



#### Convenience

applications are available at hands

#### **Simplicity**

no configuration is required at end-user devices

#### **Save time**

assets in need can be searched quickly

#### Efficient mgt.

Loss/vandalism of valuable devices are prevented

#### **Cost efficiency**

no specialized terminal is required, only smartphones

#### **Ubiquitous**

services are accessible everywhere

### **Applications**



#### 

Track the real-time locations of assets

#### • Find

Find current locations and status of a given asset in need

#### ✓ Reserve & Return

Register to use and return a given asset

#### Alert & Protect

Notify whenever an asset is moving out of its designated area

#### History & Maintenance

Usage statistics and automatic hardware/software maintenance reminding

#### C Inventory Management

Trace the availability of assets



### **Overall System Architecture**





### **Overall System Architecture**









































- RTLS technologies
  - Ultra-WideBand (UWB)
  - IEEE 802.11 WiFi
  - RFID
  - etc.
- Choosing the right RTLS
  - Accuracy: how close an estimated position is from the true position
  - Easy of deployment: cabling installation requirements, disruption to normal operations, ...
  - Costs: hardware (tags, receivers, servers), software (location engines, user applications, user interfaces), installation, maintenance, …



|                       | WiFi                                                                                                                                                    | UWB                                                                                                                                                                        |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Typical<br>Accuracy   | X Relatively low<br>1-5 m                                                                                                                               | <ul> <li>✓ High</li> <li>30 cm – 1m</li> </ul>                                                                                                                             |
| Cost                  | <ul> <li>✓ Low</li> <li>Making use of existing Wi-Fi<br/>access points</li> </ul>                                                                       | X High<br>• Deployment of<br>relatively uncommon<br>UWB receivers                                                                                                          |
| Interference<br>Level | X High<br>• Unlicensed spectrum shared<br>with many other protocols<br>operating at the same spectrum<br>• Relatively vulnerable to<br>multipath fading | <ul> <li>Low</li> <li>Unlicensed spectrum<br/>but with considerably<br/>less competitors</li> <li>Relatively immunity to<br/>multipath fading if LOS<br/>exists</li> </ul> |
| Tag                   | <ul> <li>✓ Readily available</li> <li>Many targeted devices for<br/>tracking have built in Wi-Fi (e.g.<br/>phones, tablets, etc.)</li> </ul>            | X Extra deployment<br>• Need special UWB tags                                                                                                                              |
| Ranging<br>Techniques | RSSI and TDOA                                                                                                                                           | AOA, TDOA and TOA                                                                                                                                                          |



#### **Observations of WiFi RSS through experiments**

- RSS may not vary proportionally with Euclidean distance
- RSS can be significantly distorted by day time activities
- RSS within 2 feet to AP tend to have small fluctuation





No human activity With human activities 11:00 pm to 7:00 am 9:00 pm to 7:00 pm



- Environmental variations, which cause the signals to change from time to time even at the same location, present a challenging task for WiFi-based RTLS
- Developing techniques to adapt the temporal radio maps for indoor location estimation by off-setting environmental variations using data mining techniques
- Investigate the affects of density and placement of APs and RPs to the accuracy of estimation



## THANK YOU VERY MUCH

# (We have various posters & real-life system demonstrations in the Poster/Demo Session)